Major Blow to the Idea that CO2 played a role in Global Cooling


One of the most persistent and unscientific ideas out there is the one that all past climate change was caused by the level of CO2 in the atmosphere.  The greatest example of this is the ongoing attempt to show that Antarctica today is covered in ice because 40 million years ago the level of CO2 in the atmosphere started to drop.  There are many examples of this (DeConto, 2003, related search), but they are plentiful and they are all wrong.

I have previously written about the Antarctic Circumpolar Current (ACC) and the role that it played in changing Antarctica from a temperate climate (comparable to modern day Europe) to the ice locked landmass that it is today.  The temperature difference between the equator and Antarctica is currently twice what it was 40 million years ago.

That the atmospheric level of CO2 dropped while the ACC developed is to be expected.  Cold water absorbs more CO2 than warm water does.  So the Southern Ocean cooling would naturally decrease the amount of CO2 in the atmosphere.  So there is a cause for the CO2 to drop that would also cause the temperature of Antarctica (and by average, the entire world) to also drop.

This idea is basically accepted by anybody who is not blinded by the theory of global warming.  It seems that even more evidence is forthcoming that supports the idea that the development of the ACC is what caused Antarctica to cool down.   That the National Science Foundation is reporting that the ACC caused the cooling of Antarctica is also an interesting development.

The article from the NSF is shown below, but this is a very big problem for the theory of global warming.  The more evidence that mounts that Antarctic cooling was CAUSED by geographic changes that altered ocean currents, the weaker the idea that CO2 levels determine the Earth’s temperature.  The evidence truly is overwhelming that CO2 is simply a proxy for ocean temperatures and has very little role in moderating the Earth’s temperature.

—————————————-


Press Release 11-105
Significant Role of Oceans in Onset of Ancient Global Cooling

Evidence that early Antarctic Circumpolar Current development affected global climate

Aerial view of the drillship JOIDES Resolution, workhorse of the Integrated Ocean Drilling Program.
Aerial view of the drillship JOIDES Resolution.
Credit and Larger Version

May 26, 2011

Thirty-eight million years ago, tropical jungles thrived in what are now the cornfields of the American Midwest and furry marsupials wandered temperate forests in what is now the frozen Antarctic.

The temperature differences of that era, known as the late Eocene, between the equator and Antarctica were half what they are today.

A debate has been ongoing in the scientific community about what changes in our global climate system led to such a major shift from the more tropical, greenhouse climate of the Eocene to modern and much cooler climates.

New research results published in this week’s issue of the journal Science, led by Rensselaer Polytechnic Institute scientist Miriam Katz, are providing some of the strongest evidence to date that the Antarctic Circumpolar Current (ACC) played a key role in the shift.

“What we have found is that the evolution of the Antarctic Circumpolar Current influenced global ocean circulation much earlier than previous studies have shown,” said Katz. “This finding is particularly significant because it places the impact of initial shallow ACC circulation in the same interval when the climate began its long-term shift to cooler temperatures.”

There has been a debate over the past 40 years on what role the Antarctic Circumpolar Current had in the past cooling trend.

“These climate changes are one of the most significant shifts in Earth’s history, from early Cenozoic ‘greenhouse’ climates to the mid- to late Cenozoic ‘icehouse’ that saw repeated massive glaciations of the polar regions,” said Candace Major, program director in the National Science Foundation’s (NSF) Division of Ocean Sciences.

The research was funded by NSF in partnership with the Integrated Ocean Drilling Program, and its predecessor programs, the Ocean Drilling Program and Deep Sea Drilling Project.

“The work by Katz and colleagues is the first to demonstrate that the basic structure of currents associated with modern ocean circulation has existed for the past 33 million years,” said Major.

Previous research had placed the development of the deep ACC–greater than 2,000 meters water depth–in the late Oligocene, approximately 23-25 million years ago.

That’s well after the global cooling pattern had been established.

Katz and colleagues have placed the global impact of the ACC at approximately 30 million years ago, when it was still just a shallow current.

Oceans and global temperatures are closely linked.  Warmer ocean waters result in warmer air temperatures and vice versa.

In the more tropical environs of the Eocene, ocean circulation was weaker and currents more diffuse.

As a result, heat was more evenly distributed around the world. That resulted in fairly mild ocean temperatures worldwide.

Today, ocean temperatures vary considerably and redistribute warm and cold water around the globe.

“As the global ocean currents were formed and strengthened, the redistribution of heat likely played a significant role in the overall cooling of the Earth,” Katz said.

No current is more major than the ACC, scientists believe.

Often referred to as the “mixmaster” of the ocean, the ACC thermally isolates Antarctica by preventing the warm surface waters of subtropical gyres from passing through.

The ACC instead redirects some of that warm water back toward the north Atlantic, creating Antarctic Intermediate Water.

This blocking of heat enabled the formation and preservation of the Antarctic ice sheets, according to Katz.

The circumpolar circulation, Katz concludes, was responsible for the development of the modern four-layer ocean current and heat distribution system.

Katz looked at the uptake of several elements’ isotopes, or variants, in the fossil skeletons of small planktonic organisms found in ocean sediments.

Using the drillship, the fossil organisms, known as benthic foraminifera, were brought up from beneath the sea-floor in long cores of sediments.

The foraminifera incorporated certain elements and isotopes, reflecting environmental conditions at the time.

By analyzing the ratios of these elements and isotopes, researchers were able to reconstruct past environmental conditions. They looked at isotopes of oxygen and carbon, along with ratios of magnesium versus calcium.

Analysis of these isotopes showed the earliest evidence for Antarctic Intermediate Waters, which circulates as a consequence of the ACC.

This finding is the first evidence of the effects of shallow ACC formation.

The results place the ACC’s global impact much closer to the time when Antarctica separated from South America, creating a gateway.

It had previously been thought that currents moving through this gateway could not be strong enough at such shallow depths to affect global ocean circulation.

“By reconstructing the climates of the past, we can explore Earth system responses to current climate change,” Katz said.

Katz is joined in the research by Benjamin Cramer of Theiss Research; J.R. Toggweiler of Geophysical Fluid Dynamics Lab/NOAA; Chengjie Liu of Exxon Mobil Exploration Co.; Bridget Wade of University of Leeds; and Gar Esmay, Kenneth Miller, Yair Rosenthal, and James Wright of Rutgers University.

-NSF-

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Gabrielle DeMarco, RPI (518) 276-6542 demarg@rpi.edu
Kris Ludwig, Consortium for Ocean Leadership-IODP (202) 448-1254 kludwig@oceanleadership.org

Related Websites
Integrated Ocean Drilling Program: http://www.iodp.org
Ocean Drilling Program: http://www-odp.tamu.edu/sched.html
Deep Sea Drilling Project: http://www.deepseadrilling.org/i_reports.htm

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Get News Updates by Email

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

Posted in Cause and Effect and Science Articles - Global Warming and Science Overviews by inconvenientskeptic on May 30th, 2011 at 8:52 am.

7 comments

This post has 7 comments

  1. HI!!! I’m using this as my science project article research thingy! Is that okay? LOL!

  2. Sarah,
    my advice is: don’t use this as your science project article research.
    First of all, because this is a blog, not a scientific article. And second, because the basis are all wrong. CO2 affects climate, and is the reason why the planet is warming.

  3. inconvenientskeptic Feb 6th 2012

    GW,

    So discussing a paper is not scientific?

    Feel free to discuss any aspects of this article that you think are unscientific, but vague generalities about everything being wrong is most certainly not scientific.

  4. Google A23A and click on the first link — you will be able to watch a talk by Dr. Richard B Alley given at the 2009 American Geophysical Union Fall Meeting in front of hundreds of scientists. What kind of reception does he get? Or, you could believe a blogger: your call.

  5. It will be interesting to see if my comment is moderated out, like the last one.

  6. inconvenientskeptic Feb 14th 2012

    Sometimes the spam filter catches the ones with certain types of links. It caught this one, but I happened to notice it this time.

  7. michael hart Feb 14th 2012

    Sarah,
    Last year’s Charney lecture by Graeme Stephens at the AGU is well worth a view for interested scientists.
    http://vimeo.com/33321693

    It may not be suitable material for your project Sarah, but it is a good insight into the academic world for anyone who has not yet experienced it yet. The doubt and uncertainty in the computer modelling is there there for all to see. You really don’t see any evidence that this room full of people really believe that we are on the edge of an environmental catastrophe caused by Carbon Dioxide.

    And that is probably because we aren’t on the edge of catastrophe.

Web Design & Dev by

Mazal Simantov Digital Creativity